

Learning Sverchok
Parametric and computational design tool for

Blender

1

Attribution-NonCommercial-NoDerivs 2.0

Generic (CC BY-NC-ND 2.0)

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

2

INDEX

INDEX

INTRODUCTION
Why this book
Things you should know before starting
Book structure
About me

1. SETTING UP THE ENVIRONMENT
1.1 Installing Sverchok
1.2 Sverchok resources
1.3 Setting up Blender for parametric design

SVERCHOK BASICS
2.1 Vertices, Edges and Polygons and Sverchok Data structure

2.1.1. Vertices, Edges and Polygons
2.1.2 Lists
2.1.3 Vertex list
2.1.4. Edge list
2.1.5. Polygon list
2.1.6. Levels and objects
2.1.7. Exercise

2.2 Hello Sverchok
2.2.1 Creating a new node tree
2.2.2 Adding nodes to the node tree
2.2.3. Input and output sockets

3

2.2.4. Reading lists content
2.2.5. Baking
2.2.6. Exercise

2.3 Sverchok interface
2.3.1 Adding and browsing through nodes
2.3.2. Deleting node trees
2.3.3. Node editor header
2.3.4. Tool shelf
2.3.5. Properties region

2.4 Debugging tools
2.4.1. Stethoscope, Viewer Text, Viewer Index
2.4.2. Logs
2.4.3. Heat map

3. PROBLEM SETTING AND SOLVING IN COMPUTATIONAL
DESIGN

3.1 Problem setting
3.2 Drawing a square

3.2.1. Solution
3.2.2. Implementation
3.2.3. Exercises

3.3 Drawing a regular polygon
3.2.1. Solution
3.2.2. Implementation
3.2.3. Exercise

4. MONADS AND PRESETS
4.1 Monads

4.1.1. Basics
4.1.2. Vectorized monads
4.1.3. Monad loops

4

4.1.4. Duplicate monads
4.2 Presets

5. MATRICES
5.1 Matrices

5.1.1. Basics
5.1.2. Lists of Matrices
5.1.3. Matrix Apply
5.1.4. Exercise

5.2 Twisting and object
5.2.1. Problem setup
5.2.2. Implementation

6. LOGIC
6.1 Logic functions

6.1.1. Overview
6.1.2. Exercise

6.2 List masks
6.2.1. Overview
6.2.2. Exercise

6.3 Twisting an object - part 2
6.3.1. Implementation
6.3.2. Exercise

7. INTRO TO PYTHON COMPONENTS
7.1 Formula
7.2 Exec Node Mod
7.3 Scripted Node Lite
7.4 Scripted Node

FORWARD

5

Note about Blender’s version:

This book has been written using Blender 2.79 and Sverchok

0.5.9.6. At the time of writing, Blender 2.80 it’s in its beta phase. As soon
as the stable version of Blender 2.80 will be released, the book will be
updated. If you want to use already Blender 2.80, most of the Sverchok
features presented in this edition should look and work the same and the
same principles apply.

6

INTRODUCTION

7

Why this book

This short book is born with the intent of providing people a ​solid

understanding of the basic knowledge necessary to use
proficiently Sverchok, Blender’s node-based parametric design
add-on.

Parametric design ​is getting more and more popular, yet most
of the tools dedicated to this field are part of highly priced software
packages like Rhino/Grasshopper. Sverchok offers a valid
alternative for students, small businesses and hobbyists that are
interested in this fascinating field. The fact that Sverchok comes as
an add-on to Blender, with direct access to all its ​powerful Python
API ​makes things even more exciting.

Since a tool like Sverchok is closer to a ​programming language
than to a traditional 3D modeling environment, some basic
concepts and rules have to be clear and defined. This book tries to
give you this knowledge, besides offering an overview of the major
Sverchok functionalities. At the end of the read you will have what
it takes to start exploring Sverchok independently and to start
using it to realize your ​amazing ideas​.

Things you should know before starting

A ​basic knowledge of Blender is assumed. General Blender

structure, navigating and changing the interface, basic commands
and operations in the ​3D view and in the ​Outliner ​are all things you
should already be familiar with as they will be given for granted.

You should know the ​basics of vector math and trigonometry​,
since these are two fields that are used extensively in

8

computational design. If your knowledge of these two topics is 0, I
recommend to look at the dedicated lectures on websites like Khan
academy before starting, it will not take you much more than an
hour to get the informations necessary to follow proficiently this
course.

A basic ​experience with programming ​is not necessary but if
you have one it’s definitely an advantage. Anyway any
programming-related topic will be explained starting from the
basics.

Book structure

The book provides with all the knowledge necessary to use

Sverchok with a solid grounding and without incurring into too
many frustrations. That’s why, after setting up the environment in
Blender (chapter 1 - “​Setting up the environment​”-), in the
chapter 2 - “​Sverchok basics​” - we explain in detail the data
structures of Sverchok before moving our first steps into the
add-on. Chapter 3 - “​Problem setting and solving in
computational design​” - discusses from a theoretical and a
practical standpoint how you should face the solution of a
computational design problem. After having built this solid
grounding, in chapter 4 - “​Monads and presets​” - we discover two
useful features of Sverchok. Chapter 5 - “​Matrices​” - and 6 -
“​Logic​” - address two slightly more complex topics that
nevertheless are crucial in our context. Finally, chapter 7 - “​Intro
to Python components​” - provides a brief overview of how you
can boost your Sverchok potential using Python.

9

About me

My name is ​Alberto Maria Giachino​, I
have a master degree in Urban Planning
from the ​Politecnico di Torino​. After my
graduation I discovered a passion for
programming and now I am working in this
field as one of the developers of Voxelizer,
a slicer for FDM and DLP 3D printers.
These interests of mine for coding, digital
fabrication, forms and design led me first to

start the Creative Coding meetup in the city of Wrocław, where I
am based, and then to start my blog Code Plastic
(​www.codeplastic.com​) where I talk about all these topics. In the
meantime I discovered Blender and Sverchok, that I keep learning
and exploring.

10

http://www.codeplastic.com/

1. SETTING UP THE
ENVIRONMENT

In this chapter we will see how to install Sverchok
and how to set up our Blender environment for
parametric design. We will also see where we can
find useful resources regarding Sverchok.

11

1.1 Installing Sverchok

You can install Sverchok just like any other Blender add-on. First

download the Sverchok zip file at
https://github.com/nortikin/sverchok/archive/master.zip​, then go to
File→User Preferences→Add-ons→Install Add-on from File… and
select what you have just downloaded. Then once it is installed
look for it in the list under ​“Node:Sverchok” ​and tick the flag to
activate it.

You will find Sverchok in the ​Node Editor under the icon that

resemble the DNA helix. Enable it permanently by pressing
CTRL+U→​Save startup file​.

12

https://github.com/nortikin/sverchok/archive/master.zip

1.2 Sverchok resources

Here is a list of places you can refer to when looking for

documentation, help, tutorials or inspiration:

- https://sverchok.readthedocs.io/en/latest/main.html The
official Sverchok documentation. Here you will find a
description of most of the nodes that are present, plus
some tutorials.

- https://github.com/nortikin/sverchok The official Sverchok
GitHub repository. Here you can download the latest
release of Sverchok, look at the source code, read the wiki.
The ​Issues ​page
(​https://github.com/nortikin/sverchok/issues​) is also a sort
of forum for the community, where you can report bugs but
also make questions and share your results and ideas.

- http://nikitron.cc.ua/sverchok_en.html The Sverchok
website from its creator, in English and Russian. Here you
can find various tutorials, links and resources.

- https://plus.google.com/communities/11324523101315949
7850 and ​https://vk.com/public35076122 the Google+ and
VK (in Russian) groups, for news and inspiration.

- https://blendersushi.blogspot.com/ and
https://www.youtube.com/channel/UC7ED1eB6DET3fPOW
xcDJ1lw Jimmy Gunawan blog and his YouTube channel
are a super resource, full of tutorials and videos about
Sverchok.

- http://www.codeplastic.com My blog, with tutorials for
Sverchok and other computational design related articles.

13

https://sverchok.readthedocs.io/en/latest/main.html
https://github.com/nortikin/sverchok
https://github.com/nortikin/sverchok/issues
http://nikitron.cc.ua/sverchok_en.html
https://plus.google.com/communities/113245231013159497850
https://plus.google.com/communities/113245231013159497850
https://vk.com/public35076122
https://blendersushi.blogspot.com/
https://www.youtube.com/channel/UC7ED1eB6DET3fPOWxcDJ1lw
https://www.youtube.com/channel/UC7ED1eB6DET3fPOWxcDJ1lw
http://www.codeplastic.com/

1.3 Setting up Blender for parametric design

This step is not mandatory, however I recommend you to create

a new Screen layout dedicated to parametric design​. Here is
how I do it.

After activating Sverchok from the ​User Preferences​, In the ​Info

editor’s header click on the + icon to ​Add a new screen​. We can
call it ​“Parametric design”​.

14

I suggest ​organizing it in this way​: change the ​Timeline to the
Node Editor​, make it occupy approximately half of the screen in
height and select the Sverchok icon; next to the ​3D view ​add a
Text editor​, it will be important when we will be debugging
Sverchok’s programs; if you want now you can remove the default
cubes, camera and light and press ​CTRL+U→​Save Startup File
so that the next time that you will open Blender you will find the
same setup.

Now you are ready to go!

15

SVERCHOK BASICS

In the first part of this chapter we will understand
how the geometry is represented inside of Sverchok
and how we can manipulate it. Then we will have
our first encounter with nodes and we will look at the
Sverchok interface.

16

2.1 Vertices, Edges and Polygons and
Sverchok Data structure

Before moving into Blender and starting to do our first

experiments with parametric modeling, it is a good idea to have a
good understanding of ​how the geometry is represented in
Sverchok​, so that later on we can easily manipulate it.

Let’s see, for example, how we can ​represent a cube​.

17

2.1.1. Vertices, Edges and Polygons

The fundamental elements of the geometry are the ​vertices​.

Vertices are 3D vectors with an ​x, y, z ​component, representing
their position on the three Cartesian axes. For example we will
have the vertex A at position ​(0,5,1)​.

18

Then we have the ​edges​. Each edge is described by two
vertices. For example we will have the edge ​a made by the
vertices A and B.

Finally, we have ​polygons​. Each polygon is described by at least

3 edges and, as a consequence, by at least three vertices. For
example we will have the polygon A made the vertices ABCD.

19

2.1.2 Lists

Inside of Sverchok, all the elements previously described are

stored into ​lists​. Lists are data structures, containers where you
can store data. Inside of Python, the programming language that
Sverchok is using, a list is represented by ​two squared brackets​.
The items stored in the lists are called ​elements​. We can imagine,
for example, a list called “fruits_list” that contains three elements:
“orange”, “apple” and “banana”. It will look like this:

fruits_list = [​"orange"​, ​"apple"​, ​"banana"​]

Lists offer fast and ordered storage. We can quickly access the
elements of a list by their ​index​. The index is an integer (non
decimal) number that go from zero to the number of elements
inside the list minus one. In our previous example “orange”, being
the first element of the list, has index 0, “apple” 1 and “banana” 2.
As you can see “banana”, the last element of the list, has an index
equal to the number of elements inside the list (three) minus one.
To retrieve an element from a list using its index we also use
square brackets, in this way:

fruits_list[​0​] ​#This corresponds to "orange"
fruits_list[​1​] ​#This corresponds to "apple"
fruits_list[​2​] ​#This corresponds to "banana"

When you will be debugging Sverchok, instead of squared

brackets you could see rounded brackets. Here the data structure
used is not a list but a ​tuple​. In Python, tuples differ from lists in
the fact that they are unchangeable, meaning that once a tuple has

20

been created, it cannot be modified. You don’t have to worry about
this anyway, because in Sverchok the two data structures are
treated basically in the same way and you can consider them
equivalent. Just know that you might encounter something like this:

fruits_tuple = (​"kiwi"​, ​"pineapple"​, ​"avocado"​)
fruits_tuple[​1​] ​#This corresponds to "pineapple"

2.1.3 Vertex list

Vertices, for example, are usually (but not necessarily)

represented using tuples:

a_vertex = (​23.5​, ​1.0​, ​3.2​)

23.5 is the position of the vertex on the ​x ​axis, 1.0 on the y axis

and 3.2 on the ​z axis. To retrieve a component of its location we
will then do in this way:

z_position = a_vertex[​2​]

We can also encapsulate lists and tuples one inside the others,

depending on our needs. In fact, now that we know about these
two data structures, we can go back to our cube and see how we
can use them to describe it in Sverchok.

21

As we have seen, the vertices are the foundations, that’s why we

will create at first the ​vertex list​.

vertex_list = [(​0​,​0​,​0​), (​0​,​1​,​0​), (​1​,​1​,​0​), (​1​,​0​,​0​),
(​0​,​0​,​1​), (​0​,​1​,​1​), (​1​,​1​,​1​), (​1​,​0​,​1​)]

2.1.4. Edge list

Then we will have the ​edge list​. As we know an edge is

described by two vertices; in Sverchok we represent an edge with
a two-elements list containing the indices of its vertices inside the
vertex list.

an_edge = [​0​,​1​]

22

In our example, an_edge is made by the vertices that in
vertex_list have index 0 and 1, namely the two vertices at
position ​(0,0,0)​ and ​(0,1,0)​.

The edge list will then look this:

edge_list = [[​0​,​1​], [​1​,​2​], [​2​,​3​], [​3​,​0​], [​0​,​4​],
[​1​,​5​], [​3​,​7​], [​2​,​6​], [​4​,​5​], [​5​,​6​], [​6​,​7​], [​7​,​4​]]

2.1.5. Polygon list

The ​polygons ​are like edges. They are lists containing lists of

the indices of the vertices making the polygon. If you have a
polygon, then implicitly you already have the edges.

a_polygon = [​0​,​3​,​2​,​1​]

We can now write the ​polygon list​, in this way completing the

information that we need to represent a geometry in Sverchok.

polygon_list = [[​0​,​3​,​2​,​1​], [​0​,​1​,​5​,​4​], [​1​,​2​,​6​,​5​],
[​2​,​6​,​7​,​3​], [​0​,​3​,​7​,​4​], [​4​,​7​,​6​,​5​]]

Now that we have the vertex list, the edge list and the polygon list

we can correctly represent our cube inside of Sverchok.

23

2.1.6. Levels and objects

Before moving forward, few important notes about lists: we have

already seen how we can have lists (or tuples) inside of lists (or
tuples). This process can go on almost indefinitely and a single list
can have many ​levels​ of encapsulation.

one_level_list = [​3​,​5​,​6 ​]
two_levels_list = [[​4​,​1​,​0 ​], [​2​,​1​]]
three_levels_list = [[[​4​,​6 ​], [​4​]], [[​3​,​4​]
]]

We start counting the levels from 0, where the level 0 is the list

itself and then incrementing the count as we go “deeper” inside of
it.

three_levels_list = [[[​4​,​6​], [​4​]], [[​3​,​4​]]
]

In Sverchok the elements contained at the level 0 are called

objects​: ​two_levels_list has two objects, ​one_level_list has
three objects. This might not look important now, but it will become
later on, when we will have to debug our node trees. Take for
example these two lists:

list_a = [[​5​,​6​,​7​], [​7​,​2​,​1​]]
list_b = [[[​5​,​6​,​7​], [​7​,​2​,​1​]]]

24

Although they contain the same values, the two lists are not
equal because they don’t have the same structure. ​list_a
contains two objects, ​list_b one object. In Sverchok sometimes
you need to pass data that have a specific structure (for example a
list containing just a single object), or if you have multiple inputs
you cannot pass lists that contain a different number of objects or
that don’t have the same amount of levels. On top of that, some
nodes in Sverchok modify the data structure of your inputs. For
example you pass a list with this structure ​[[x,y,z]] and as
an output you get a list with this structure ​[[[x,y,z]]]​.
Both lists contain one object but the first one has two levels, the
second one three. This might produce problems and frustrations if
you are not aware of these kinds of situations.

It is important that you have clear the content of this chapter.

Being able to read, understand and debug the content of lists is an
essential skill inside of Sverchok, if you don’t want to spend hours
trying to figure out why your node tree doesn’t want to work.

25

2.1.7. Exercise

To conclude, try this ​exercise​. Take this pyramid and write the

vertex list, the edge list and the polygon list and make sure that
each contains only one object.

26

2.2 Hello Sverchok

Now that we know how Sverchok represents geometry, we can

start to get our feet wet by creating ​our first node tree​. The first
thing that you do when you learn a new programming language is
creating an ​“Hello World” program. Since Sverchok is
comparable to a programming language, a graphical/node-based
one, we will also write our “Hello World”, or “Hello Sverchok”, if you
will.

2.2.1 Creating a new node tree

To work with Sverchok, as we said, we need to be inside of the

Node Editor​, having the Sverchok icon selected. Now we have an
empty canvas, however we cannot work with it yet, first we need to
create a new node tree​. We can do this by clicking on the + New

button.

Now that we have a node tree we can change its name. Click on

“​NodeTree​”, write “​Hello Sverchok​” and press ​Enter​.

27

2.2.2 Adding nodes to the node tree

Now we can start to ​add nodes​. To do this we have three

options, my favorite is pressing ​SHIFT + A on the main area. A list
with all the nodes categories will appear. Don’t worry about them
now, we will explore them during the course. By clicking on a
category a list of the available nodes will appear (or other
sub-categories).

By clicking on a node, this will be added to the layout. You will

notice that there is also a ​Search ​option in the list, where you can
look for a node directly with its name (you can use this function
directly also by pressing ​CTRL + SPACEBAR in the main area).
This is quick and practical, however at the beginning I recommend
you not to use this feature and instead to search manually through

28

the nodes categories. In this way you will get more familiar with the
names and you will discover by yourself new interesting nodes.

Now, try to add the ​Box node from the ​Generator ​category and

Viewer Draw​ from ​Viz​, we will work with them soon.

Another way to add nodes to the layout is clicking on ​Add​, in the

header. The same nodes categories with the related nodes will
show up and you can select what you need from here as well.
Finally, in the ​Tool Shelf​, you will find the node that you need in
one of the tabs, each corresponding to a category (except the first
two, that we will cover in another chapter).

29

2.2.3. Input and output sockets

Great, now we have our first two nodes. You can ​select ​them by

left-clicking on them and you can ​drag ​them around by dragging
them with the left mouse or by pressing ​G​ after selection.

Each node performs something different, allowing you to create,
analyze and modify geometry and data. The ​Box node for example
will create a box geometry and ​Viewer Draw will render it in the
3D view​. As you might have notice though, at the moment you
don’t see any cube anywhere: stay with me.

Each node has always some ​input or output sockets​, or both of
the two. The ​inputs ​are the data necessary for the node to
perform its specific actions, the ​outputs ​are its results. If a node
doesn’t have enough inputs to perform its task, it will stay idle
and/or will become orange; if it gets the wrong ones, it will raise an
error and will become red. The inputs are normally numeric data in
the form of lists (but not always). The outputs can either be data or
some type of action: this is the case of the ​Viewer Draw​, for
example, that will render the geometry in the ​3D View, whereas
t​he ​Box node takes data as input and provides other data as
output. When it comes to input parameters, depending on the
node, you can either input directly the data or link the output
sockets of some other nodes, or both of the two (like in the case of
the Box).

To link two sockets, simply drag the mouse from to another.

30

In our case, try to link the ​Vers ​socket in the ​Box with the

vertices' socket in the ​Viewer Draw and ​Edgs with ​edg_pol​. A
cube will appear in the 3D view! Congratulation, your first working
Sverchok node tree! We have finally written our “Hello Sverchok”.
Now we can say that a ​node tree ​is a set of nodes linked together
that produces a sensible output.

31

Let’s analyze a bit more what we have in front of us, particularly
regarding input and output sockets. There are ​four types of
sockets​: orange for the vertices (v), blue for the matrices (m),
green for strings and lists (s) and gray for the objects (o).

In most of the cases, you can only ​link sockets of the same

type​. When you try to link sockets of different types or you provide
incorrect data formats (say, a list of lists instead of a simple list)
you can have different situations: Sverchok could show you clearly
that there is an error by turning one or more nodes red, or you
might get some strange and unexpected results, or the node tree
could be stuck in the last valid output. Try for example to link ​Edgs
to ​matrix​ and you will see what I am talking about.

2.2.4. Reading lists content

Now that we know the rules of the game, let’s try to move a little

bit forward. For example, let’s see if what we said in the previous
part about Sverchok data structure is correct. We will start by
adding a new node, ​Viewer Index from ​Viz​. Now Link ​Vers with
Vertices​. The ​indices of the vertex list of the cube will appear
in the ​3D view​. If you cannot see them clearly, click on the
Background ​button inside the node. Now that we know which
position each vertex occupies inside the vertex list, we will keep it
as a reference while we investigate the three output lists of the ​Box
node.

32

Now we need a way to ​inspect the content of lists​. The easiest

options is the ​Stethoscope MK2 ​node, under ​Text​.
Add it and link ​Vers from ​Box to ​Data​. You will see how the data

are structured and you will notice that they are like how we
described them in the previous chapter. Check also the edge list
and of the polygon list.

Another way to inspect the content of a list (which I prefer) is to

use the ​Viewer Text MK3 node, also under ​Text​. I recommend

33

the following setup: check the ​autoupdate parameter and
uncheck the ​frame one; next to the ​3D view ​create a new area
and set it to be a ​Text editor; ​if you have already linked the data
socket with an input (for example the vertex list of the cube) and
clicked on the ​VIEW ​button you will see that in the available files of
the ​Text editor there is one called ​Sverchok_viewer​; ​select it and
you will find the data formatted and organized in a readable way.
Try to link the edges and the polygon list and make sure you find
correspondence with what we have seen in the previous chapter.

The three nodes that we have just seen ​Viewer Index​,

Stethoscope MK2 and ​Viewer Text MK3 are your allies in times
of debugging, get familiar with them!

34

2.2.5. Baking

Before concluding this lesson, one last element: now we have

created our cube and we can see it. However, maybe we would
like to export it, or to add it to other assets that we have created in
the ​3D view or perform some other type of actions not possible in
Sverchok. At the moment we cannot do any of this. The solution is
to ​bake ​the cube and we can do this simply by clicking ​BAKE ​in
the ​Viewer Draw​. Now we have a new object in the ​3D view that
also appears in the ​Outliner​. This object is not related anymore
with Sverchok, so if we modify our cube in Sverchok the changes
will not be reflected in the object previously created.

Another option that will generate directly an asset immediately
available in the ​Outliner​, while keeping the connection with the
Sverchok node tree, is the ​Viewer BMesh​ from ​Viz​. One of the
advantages of this node is that you can, for example, apply
modifiers from the ​Properties​ while keep editing the shape in the
node tree. If I don’t need to do something like this though, I tend to
prefer the ​Viewer Draw​ as it allows me to control more easily the
visualization of vertices, edges and polygons.

2.2.6. Exercise

Get familiar with the other generators, like ​Plane​, ​Circle or

Cylinder​. Play with them and analyze their lists.

35

2.3 Sverchok interface

In this chapter we will have a general look at ​Sverchok

interface​. We will go into the details, where necessary, during the
rest of the course. It’s a bit of a documentation-style chapter and
not very exciting, but I advise to read it to have a general
understanding of the Sverchok features.

2.3.1 Adding and browsing through nodes

We already know that to ​create ​a new node tree we need to click

on the New button in the header of the ​Node editor​. Once a node
tree is created we can easily ​change its name​. Create a node tree
and call it “Useful node tree”. You can create and ​add ​to your
blend file as many node trees as you want, just click on the + icon,
near the name of your current node tree. Try it. You will have a
new empty area. Call it “Useless node tree”. By clicking on the
Sverchok icon with the two arrow you will be able to ​browse
between all your node trees. Go back to “Useful node tree”.

36

2.3.2. Deleting node trees

Let’s see how we can ​delete ​a node tree that we don’t need.

Maybe you are already familiar with the concept of ​data-blocks​,

if not, you need to know that Blender organizes the content of each
blend file in data-blocks. Data-blocks are the base units for any
Blender project. Examples of data-blocks include: meshes,
objects, materials, textures, scenes, texts, brushes... Node trees
are another type of data-block. Each data-block has a certain
number of “users” which represent the number of links the
data-block has to other data-blocks i.e. from how many meshes
one material is used. If a data-block has zero users at the moment
of closing a file, Blender will delete it. This is a way to keep under
control the size of Blender files.

The best way to delete a node tree from Sverchok, if we want to,
is to set its number of users to zero​. We can do this by pressing
the ​x ​icon while holding SHIFT. This forces the user count of the
node-tree to zero. Now we can save the file and the next time that
you will open it you will not find the node tree that had zero users.
Alternatively, after you have saved your file, you can go to
file->revert​, which does the same thing described before in place.

Another option is, after setting the number of users of the node
tree to zero, then temporary change the node editor to the ​3d view
and in the ​tool shelf find the ​Sverchok panel, where you will find
all your node-tree. If you click on ​Clean layouts, the node-trees
with zero users will be removed.

37

2.3.3.​ Node editor​ header

Let’s go now through each part of the Sverchok interface and see

what we can find, starting from the header. Sverchok is not the
only node editor in Blender, although it’s the only for parametric
design, and the ​Node editor header is common to all of them.
Some elements are in common and some are not. Let’s look at
them, moving left to right.

- View​: different functions related to the visualization of the

node tree. ​View all ​is particularly useful, with his ​home ​key
shortcut. Try it. Here you can also activate the ​tool shelf
and the ​properties ​region which we will cover in a moment.

- Select​: different functions for selecting the nodes. As you
can see the familiar ​B and ​C and other types of selection
are available.

- Add​: lets you add nodes from the various categories to the
current node tree.

38

- Node​: different useful functions related to the selected
nodes. We will cover some of them while we proceed with
the course.

- Node tree type selector​: Here you can switch to other
node editors.

- Browse node tree and New button​: covered in the
previous paragraphs.

- Use the pinned node tree​: related to other node editors
and not to Sverchok.

- Go to parent node tree​: same as point before.
- Offset​: from Blender docs: “When you drop a node with at

least one input and one output socket onto an existing
connection between two nodes, Auto-offset will, depending
on the direction setting, automatically move the left or right
node away to make room for the new node. Auto-offset is a
feature that helps organizing node layouts interactively
without interrupting the user workflow.”

- Snap​: if selected, it will snap the nodes to the grid or to
other nodes, depending on the value setted in the next
drop-down list. Personally, I prefer to have this off but you
can give it a try and decide by yourself.

- Copy ​and ​paste​: allows you to copy and paste the
selected nodes. Note: ​works only between the same
blender file​. To copy nodes to another files you will have
to do in the way that we will describe soon.

- Examples​: here you will find different examples of
node-trees created by the developers of Sverchok. They
are a great source of inspiration and learning. You can start
to check them and see if you can make sense of what is
going on.

39

2.3.4. ​Tool shelf

To conclude, let’s look at the two side regions of the ​Node Editor​,

the ​tool shelf and the ​properties​. In the ​tool shelf you will find all
the Sverchok nodes subdivided by categories. As we have seen
this is another way to ​insert nodes inside the tree although
personally I never use it. At the top of the ​tool shelf there is the
grease pencil ​tab. This is a way to take notes in the main area
that could eventually be transformed into geometry; anyway we will
not use it and due to that we can skip it.

The next tab (if you have an active node tree) is ​Preset ​tab. This
can be useful because it allows you to create your own personal
library of custom nodes. We will talk about it in another chapter.

2.3.5. ​Properties region

Finally, we have the ​properties ​region. Here we can control

settings and perform actions on selected nodes as well as on our
node trees; plus, we can update Sverchok.

When you select a node, you will get three dedicated panels:

Node​, ​Color ​and ​Properties​.
- In the ​Node ​panel you can set the ​Name ​and the ​Label​.

The ​name ​is what Sverchok uses internally to refer to that
specific node and it must be univocal within the context of
that node tree. The ​label ​is what appears on the header of
the node and it doesn’t have to be univocal. It is often a
good idea to change the label of a node to make clear what
it represents in the context of its tree. Underneath these
two fields we have an area very useful if you want to

40

understand the functioning of a node. First of all you can
check the ​documentation ​of the node ​online​, ​offline ​or on
G​itHub​. If you choose online you will be redirected to
https://sverchok.readthedocs.io/en/latest/main.html​, a
resource that you can always check. Most of the nodes are
described there, although not all of them and not all of them
properly. In these cases, and not only in these cases, a
good idea is to look directly at the source code of the node.
You can do this easily with the next two buttons: ​Edit
source externally and internally. Both of them will open the
local files with the source code of the node, ​Externally ​on
an external text editor that you specified in the settings of
Sverchok (in the ​User Preferences​, I use Visual Studio
Code), ​Internally ​on the local Blender’s text editor. Here
you can look at the code of the node and really understand
how it works. You can also modify it and save the
changes, having your local custom version of Sverchok, but
I don’t recommend it.

41

https://sverchok.readthedocs.io/en/latest/main.html

- In the ​Color ​panel you can set the color of the node in the
main area.

- In the ​Properties ​panel you will get the inputs of the node,
plus in some cases, few more. Better to look at this area
when you try a new node, you might find out some
interesting​ extra settings​.

After these node specific one, we find some ​generic panels​. The
first and the second are dedicated to the ​grease pencil​, and we
can skip them.

- SV. Import /export​; here you can import and export node
trees. Node trees (or selected nodes) are exported in ​json
format. You can then import such ​json ​files in the active
node tree or in a new one. You can also import from a gist
link, if you have the link saved in your clipboard . Create a
folder dedicated to Sverchok and start to have there your
own library or re-usable node trees.

42

- Sverchok version panel​; in the header of this panel you
can read your current version of Sverchok. If you want to
update Sverchok you can click on ​Check for updates​. If
updates are available you will be asked if you want to
update Sverchok. Remember to do this operation from time
to time. To know what are the latest changes on Sverchok,
click on ​Show latest commits​. If new commits were
pushed to GitHub they will appear in the ​Info editor​. On the
top of the panel you have two buttons for updating the
current or all the node trees of the file. Sometimes you
need to press them, if the auto-update gets frozen. Finally,
a schematic view where you can control important aspects
of your node tree; the ​B button allows you to bake all the
nodes that have this possibility (like the ​Viewer Draw​); the
eye-icon button will hide the results of your node tree in the
3D view​; the P button is a very useful one. Sometimes your
node tree can become heavy and updating it can take
many seconds. In these cases you don’t want the
auto-update to run. You can disable it by clicking on this
button. Now you can make the changes to you node tree
that you want, and when you are ready you can reactivate
the auto-update and click on ​Update node tree​; the ​F
button will make sure that your node tree is saved, even if it
has zero users.

43

44

2.4 Debugging tools

One of the key competences that you need to acquire when

learning a tool like Sverchok is ​debugging​. It means to
understand which parts of your parts of your program are
producing errors or unexpected results. This is something that you
will have to do much more often than you would like, especially at
the beginning (but also later on). Let’s see what are the main tools
Sverchok offers to simplify this process.

2.4.1. Stethoscope, Viewer Text, Viewer Index

We have already talked about these nodes and we have already

stressed their importance. They allow a ​direct inspection of the
values of your lists of data. Thanks to them you can verify that both
the content and the format (see nestedness level of input lists) of
the data are correct. Use them often and use them wisely.

2.4.2. Logs

When a node produces a red error or it doesn’t react and the

direct inspection tools of the previous paragraph are not enough,
an important help could come from the logs that Sverchok
generates, where most of the times there are the informations that
you need. To ​see the Sverchok logs​, just select the file called
“sverchok.log” from the ​Text​ ​Editor​.

In the example below, for instance, we are passing a Float value
to a socket that expects an Integer. In the log we can see that this

45

is an error: “​TypeError: ‘float’ object cannot be interpreted as an
integer”.

Sometimes we might need to look directly at the log produced by
Blender, since some important information might not go to the
Sverchok log. To​ see the Blender’s log​, in the ​Info ​editor, go to
Window​ and select ​Toggle System Console​. A new console
window will open.

46

2.4.3. Heat map

Another useful tool is the ​heat map​. This allows you to

understand where are the ​bottlenecks ​of your node tree, meaning
which are the nodes that are taking more time to compute. The
nodes that take less time will be colored in white, while the slowest
ones in red, with different gradations of pink in between.

In order to activate the heat map you need to go to the ​Sverchok
preferences (inside the general Blender user preferences) and
then under ​General→Debug, tick ​Heat map. Now close and
reopen Blender and the heat map will be applied.

47

3. PROBLEM SETTING AND
SOLVING IN COMPUTATIONAL
DESIGN

How to approach the solution of a computational
design problems? What are the steps that we have
to take from start to finish? This will be the topic of
the first part of the chapter. Later we will apply the
knowledge that we’ve gained to solve a concrete
task inside of Sverchok.

48

3.1 Problem setting

Now that we have a basic knowledge of Sverchok and its

components, we can start to put together all the ingredients and
apply them for our needs. That’s what a tool like Sverchok and a
programming language in general allows: it provides you with
control and power, so that you can ​produce results that would
not normally be possible with standard and predefined tools​. I
hope that by now you understood what the power of Sverchok is:
by allowing you to access and ​control directly, through
mathematical operations, the individual vertices of a
geometry​, you can generate all sort all things with it. In fact,
although in Sverchok there are more than 150 nodes and counting,
you could do almost everything with just a bunch of them, the
basic ones, that we are covering in these first videos. All the other
nodes are just adding layers of abstraction to facilitate actions that
otherwise would require tens of nodes.

So you have some ideas, some projects that you would like to

bring to life and you know that a parametric/computational method
would be of big help. That’s great, let’s see the approach that we
have to take when facing such projects. If you are new to
programming and computational design, you have to learn to ​think
sequentially and to subdivide a problem in small steps​. Unlike
“traditional” 3D modeling, where you can sketch something,
change a little bit here, move it a little there, and what you do in
one part of the model doesn’t necessary affect what there is in
another one, in computational design, although to some extent you
can take a similar approach, at the end you will have to ​come out
with a coherent program or node tree, where each node/function
provides the correct inputs for the next one, until you reach the

49

final output(s). Only at the end you will have time to play with all
the parameters and sliders, when the whole structure (at least the
main one) will be built and it will work like a clock. This is a
different approach and for some of you at the beginning it may not
be easy, as it was not for me as well when I started. Personally, I
love it now. And I hope you will love it too.

When we are talking about programming, and it applies also to

Sverchok, we need to distinguish between the solution of a
problem and its implementation. The ​solution is the steps that we
need to take to solve a particular problem and it can be expressed
in general terms and in everyday language. The ​implementation
is how we are going to translate the steps of our solution in the
language of the tool we are using, in our case a Sverchok node
tree. A common mistake is jumping to the implementation before
having clear the solution. This should be avoided for all non-trivial
problems.

There is rarely a single solution to a problem and there almost
never is one single possible implementation of a solution. This
leads us to the fact that there are good and bad (inefficient)
solutions and good and bad implementations. Generally we want
to create a solution that is: ​correct ​(obviously); ​efficient ​(takes
only the necessary steps to accomplish the goal); ​general ​(can be
used or adapted to solve a wider variety of situations. This last
point is not crucial though). On the other hand, a good
implementation is ​efficient ​(provides the desired output without
waste of resources), ​readable ​(by other people and by yourself)
and ​maintainable ​(for the future).

Let’s see a ​general strategy that you could use when you are

about to start a project in Sverchok, moving from the problem to
the solution to the implementation:

50

1. Have a vision of your final result: ​what are you trying to
achieve? What will your node tree do? How do you imagine
it?

2. Set the main goal: ​from your general vision, identify the
main goal that need to be achieved. It must be clear an
minimal. Put aside every fancy and optional feature, you
will work on them afterwards.

3. Specify your inputs: what are the main variables that will
influence the result of your goal? If you want to create a
grid, for example, your inputs could be the number of cells
on the ​x,y​ axes.

4. Identify the main steps to the solution: ​now that you
have the start and the end point, can you identify some
clear sub-goals or sub-results that will lead you to the main
one? If so, you can now treat each of them as a separate
problem and apply the points of this list recursively. A good
strategy to identify these steps is to ​move backwards​,
starting from the solution. Ask yourself: what is the last step
before getting to the solution? Then repeat this question for
what you have just found, and continue the process until
you reach your input parameters.

5. Review: ​check your solution and verify if you are not taking
any unnecessary steps. Can you think of a more efficient
and straightforward way of reaching your goal? If the
answer is no, move to the next point.

6. Implement each step: now that you have a clear path
from the beginning to the end, you can start ​working on the
implementation of each step. If you did the previous points
correctly, this part will be fairly quick and fun.

7. Test: ​now you should have a working solution. Make sure
that everything works correctly and that there are no bugs.

8. Review and refactor: ​look at your implementation and find
the weak parts that could be more efficient. Also organize

51

your layout, make sure it’s understandable. Tidy things up.
Remember, a good implementation is efficient, readable
and maintainable.

9. Expand: ​now that your main goal has been achieved, you
can start to expand your node tree, adding more variables
and functionalities, moving in the direction of the general
vision that you had in the point number one. If an addition
that you want to make is particularly complex, you can
repeat the same process for that specific part.

10. Enjoy your results!

52

3.2 Drawing a square

3.2.1. Solution

Let’s try to apply all these ideas in Sverchok now, starting from a

small problem: ​drawing a square​. Forget for now that under
Generators ​there is the ​Plane MK2 node that would allow us to do
this in one shot. What we want is to create by ourselves the vertex
list, the edge list and the polygon list and link them to the ​Viewer

Draw​.
Think by yourself now and come out with your own solution,

following the steps that we have covered in the previous chapter,
particularly the ones from one to five: how would you solve this
problem? Which steps would you take? Which parameters would
you use? Think in abstract terms and write you process on a piece
of paper. Do it now.

Done it? As we said, there rarely is a single solution to a problem.

We will now see one within the many available options. You can
compare it with the one you wrote and decide which one is better.

As we know, the first thing that we need to have is a ​clear goal​:

we need the list of vertices, the list of edges and the list of
polygons. Since edges and polygons depend on the vertex list, we
will need to find this one first. This is our main goal.

What are the ​main variables that will influence our result? For
sure we want to specify the size of the square and probably also
its position. These will be our inputs.

53

How can we get the vertex list starting from our inputs? A
common ​strategy ​for this problem is to specify the coordinates of
the top-left vertex of the square and the length of its side and
derive the other vertices from these two informations.

Given ​(x,y) the top-left vertex, where x is its position on the ​X ​axis

and ​y its position on the ​Y axis and ​l the length of the side, the top
right vertex will be ​(x+l,y)​, the bottom right vertex will be (x+l, y-l)​,
the bottom left vertex will be ​(x,y-l)​. Try to verify this on a piece of
paper before continuing. After having all the vertices it will be easy
to create the list of the 4 edges and the list of polygons (only one).
Now we can move to the implementation in Sverchok.

3.2.2. Implementation

Set up the input and output nodes first. Add a ​Viewer Draw​, from

Number​, a ​float node and from ​Vector ​a ​Vector in node.
Change the label of ​float to ​Size and the one of ​Vector in to
Top-left corner​. This is a good practice because in this way we are
always sure about what our nodes represent.

54

If you look back at our solution, you will notice that, to get our four

vertices, ​we only need four values​: ​x and ​y, ​which we know from
our ​Top-left corner​ node, and ​x+l ​and ​y-l​. Let’s get them.

From ​Vector​, add a ​Vector out node. This node takes a vector
as input and returns its ​xyz components. Link it with ​Top-left
corner.

55

Now add two ​Math MK2 nodes from ​Number​, choosing the
operator ​Add for one and ​Sub ​for the other; link to the ​Add ​node
the ​X output socket of the ​Vector out and the ​Size ​value and to
the ​Sub​ node the ​Y​ output socket and ​Size ​value.

Now that we have the (x+l) and ​(y-l) ​points we can use ​Vector

in to build the three other vertices of the square. As you can see
from the screenshot for clarity I linked the X and Y sockets of
Vector out​ to two ​float​ nodes and modified all the labels.

56

The last step is joining them in a single list for ​Viewer Draw​. We
can do it with the ​List Join node from ​List→Main​. Keep a stable
order (clockwise or counterclockwise) in the list and set the
JoinLevel lists​ parameter to two, so that we can get a single object.

We now have the vertices and if we use the ​Viewer Index we

can look at their indices. The final step is creating the edge list and
the polygon list. Since we only have four edges we can write them
directly. To do this we will use the ​Formula node, from ​Number​.
This is a handy node that allows us to write sequences of
mathematical operations from different inputs. It can also create
lists in place, what we will do now. Add two ​Formula nodes, look
at the indices of the vertices and write the edge list and the
polygon list.

57

Great, now we have our square. For this specific case this

solution is good. But what if we want to draw a triangle? Or an
hexagon? Can we think to an approach that would allow us to
draw all these polygons, only by specifying the number of sides?
This will the topic of the next chapter, you can already start to think
to a solution. But before, a couple of exercises.

58

3.2.3. Exercises

1. Create a node tree where you draw a square that has as
input parameters its center’s position and its length. You
can follow the approach previously seen or go for a
different path.

2. Adapt the two node tree created to draw squares so that
they can draw also rectangles.

59

60

3.3 Drawing a regular polygon

In the previous chapter we have seen how to approach the

solution of a computational design problem. We have used this
knowledge to create a node tree that could draw a square starting
from its top-left corner and its length and, in the exercise, from its
center and its length. We have concluded that, although these
solutions were effective, they were not general: in fact, if we want
to use them to draw other regular polygons, like triangle or
pentagons, we would have issues. In this chapter we will find a
solution that will allow us to ​draw any type of regular polygon​,
by specifying only its number of sides.

3.2.1. Solution

Following our checklist from the paragraph 3.1 we can say that

we want to create a node tree that generates regular polygons; the
main goal will be finding the vertex list of such polygons; our ​input
parameters will be the number of sides and the size of the
polygon; to identify the main steps to reach our goal, we need to
find some common property ​within the regular polygons that we
can use for our purposes. It turns out that the solution lies in the
definition of regular polygon itself: all regular polygons are ​cyclic​(all
corners lie on a single circle, called the circumcircle) and
equiangular​(all corner angles are equal). All we have to do to find
the vertices of our polygon is to find the angle that separates its
vertices lying on the circumference. We can then find their x,y
position on the unit circle from the cosine and sine of the angle.
Finally, we can scale the result by the desired length of the

61

circumference. This will give us the vertex list, leaving us only to
write the edge and the polygon list.

3.2.2. Implementation

Let’s start by inserting the entry and exit points of our node tree.

Add a ​Viewer Draw​, a ​Float and an ​Int node. The ​Float will
determine the final size of our polygon, the ​Int its number of
sizes. We want to use an integer number because it doesn’t make
sense to have 4.34 sizes.

We can identify the angle that separates the vertices of the
polygon lying on the circumference by dividing 2π by the number
of sizes. We will use the two ​Math MK2​ node for this purpose.

62

Now we want to know at what angle each vertex is on the
circumference, starting from 0π. We will use the ​Range Float
node from ​Number​ to generate this list. I suggest you to explore
this node and understand its functioning because it’s very useful
and we will use it in many occasions.

The nodes in the image above will produce the following list:

[[0, 1.57, 4.14,4.71]]​. To find the coordinates of the vertices
we need to get the sine and cosine of these angles and multiply
them by the size of our polygon (the radius of the circumference).
Also, here we will use ​Math MK2 nodes. Finally, we will plug the

63

results in a ​Vector in ​node and pass the created vertex list to
the ​Viewer Draw​.

What we have left is the ​edge list and the ​polygon list​. Unlike

with the “draw a square” node tree created in the previous chapter,
we cannot think now of manually writing the lists, since we can
have a high number of sizes and since this number can always
change. We need a way to ​generate these lists automatically
simply from the ​N sides parameter. For this purpose, let’s analyze
the edge list written for the square:

[[​0​,​1​],[​1​,​2​],[​2​,​3​],[​3​,​0​]]

You can probably notice this pattern:

[[​0​,​1​],[​1​,​2​],[​2​,​3​],[​3​,​0​]]

The list going from 0 to the number of sides minus 1 is next to
the same list shifted of one position. Let’s try to reproduce this
behavior in Sverchok.

First we will create the list going from 0 to the numbers of sides
minus 1. We will use a ​Range Int​, from ​Numbers, for this
purpose. As ​Stop parameter ​you can either plug the ​N sides
node or use ​List Length from ​List→List Main plugged with the

64

vector list. The ​List Length node returns the number of
elements inside a list.

Now we need the second list, the one shifted by one element
to the left. We have a node just for that, ​List Shift ​from
List→List Struct that shifts the elements of a list ​at the specified
level by the desired amount of positions, to the left or to the
right. Experiment with this node and check the results in the
Stethoscope​.

Now we will use a node, ​List Zip​, from ​List→List Main​, that
takes two or more lists as inputs, then from each list takes every
n​th element and creates a list out of them. For example, in our
case we will have this, the edge list that we wanted:

65

And the polygon list? Well, as you have probably already
realized, it is the first ​Range Int ​node that we have already
created:

[[​0​, ​1​, ​2​, ​3​]]

We have created a node tree that allow us to draw any type of
regular polygon. What is we want to use it inside a bigger tree in
the same or in another file? Should we copy and paste or export
import all the nodes? It would not be practical. There is a way to

66

pack all of them together in a single node ​and add it to our
personal library​. We will talk about these possibilities in the
next chapters.

3.2.3. Exercise

We have already tried a decent amount of nodes. Plus, we
know the approach that we need to follow when facing a
parametric design problem. Before moving forward, try to apply
this knowledge and start making something your own. Have fun!

67

4. MONADS AND PRESETS

In this chapter we will see two useful Sverchok tools
we can use to organize our node trees, making
them more intelligible and faster do develop and
reuse.

68

4.1 Monads

One of the features of Sverchok is the ability to create ​node

groups​, also known as ​monads​, where you take a bunch of
nodes and group them into a single one that has its own inputs
and outputs.

4.1.1. Basics

Let’s take for example the “Draw a polygon” node tree of the

previous chapter. Since, of all the single nodes that we have used
to create it, we can ​abstract a single function out of them - ​draw
a polygon ​- we can actually create a single node with this purpose.

Practically speaking you want to ​select all the nodes, apart from
the ​Viewer Draw (this is not mandatory but I think it’s better to
leave the nodes that render outside of the ​Node Editor out of the
monads) and press ​CTRL+G or go to ​Node→Make Group ​in the
Node Editor header​.

After pressing ​CTRL+G​, the background of your main area will

change to light green. You are now inside of the newly created
monad.

69

To get out of it, press ​Tab ​or click on ​sv parent on the left of the

header of the ​Node Editor. ​You will see the node group you have
just created.

Before using it we still need to set up properly its input and

outputs. Go again inside the monad (you can also click on ​edit!​).
We can link here our input parameters to ​Group Inputs Exp ​and
the outputs to ​Group Outputs Exp​.

70

If now you open, inside the monad, the ​properties' region​, you will

see a new panel, ​Sv Custom Group Interface​: here you can
change the name of your inputs and outputs, set their order, their
type as well as other settings like the default value. These changes
will be reflected on input and output sockets of the group node.

We can now get out of the monad, change its label and start to
use it as just any other node in Sverchok.

71

4.1.2. Vectorized monads

If you look at a group node, you will see that there is a button

Vectorize​. This offers you the possibility to ​vectorize ​our monad.
Most of the nodes in Sverchok are vectorized, meaning that if we
pass a vector of data (e.g. a list) they will perform their operations
on each element of the list and they will output another list of the
same length with the results. For example if we have a node that
adds 1 to the input and we pass the list [5,4,1] we will get as output
another list [6,5,2]. This is not obvious because some nodes can
only process one element at the time and if we pass a list they will
likely process only the first one and return just that, or none at all.
If all the nodes inside a monad are already vectorized then the
monad will be as well. But if one of them is not, then you will have
to apply the ​Vectorize ​button to make sure that your monad can
correctly process lists.

You can verify this with the ​Polygon monad itself. Try to pass a
range of integers to the ​N sides parameter. Unless you vectorize
(and here also ​Split to be sure that each input as length one) you

72

will get only one element as output, corresponding to the first
element of the input list.

4.1.3. Monad loops

Another option that you see in the monad is the ​Loop

parameters. This allows you to cycle the data ​of the monad,
where the outputs of one loop become the inputs of the next one,
until the specified number of repetitions is reached and the final
result is provided.

The condition to use this feature is that the type and number of
inputs and outputs have to be equal.

Here’s for example how we can create a Fibonacci sequence

(although there is already a specific node for that):

73

The maximum number of loops is by default limited to 5. If you

want to increase this number, you can do it by going in the
Property region ​inside of the monal to the ​Sv Custom Group
Interface​. Be careful though because in same cases you might get
your computer stuck.

74

4.1.4. Duplicate monads

You can ​duplicate monades just like every other node (with

copy/paste or with ​SHIFT + d​). Just be aware that if you then
modify a node group the changes will be applied also to the other
duplicated monads. If instead you want to create a new
independent monad from an existing one you need to right click on
it and select ​Make unique (Monad)​.

75

4.2 Presets

Presets allow you to save groups of nodes or monads into your

own ​personal Sverchok library that you can reuse in any Blender
file.

To access the ​Presets panel you need to open the ​Tool shelf ​of
the ​Node Editor​.

If now you select some nodes or a monad, for example the
Polygon monad that we have created before, and click on ​Save
Preset, ​you will be able to add it to your library that you can access
from any Blender file.

76

Now when you will want to use a preset you will only have to
click on its name in the ​Presets panel and it will be added to your
current node tree.

Finally, if you click on ​Manage Presets​, you can perform other

operations, like import and export presets, edit metadata and
delete them.

I encourage you to build your own library of presets and to make

good use of it.

77

5. MATRICES

Matrices are a powerful tool that allows you to
directly apply a set of transformations to an object.
When I first started to learn Sverchok I was trying to
avoid them because at the beginning they might not
look so clear. Don’t make this mistake and start to
use them right from the start.

78

5.1 Matrices

5.1.1. Basics

As we already know matrices in Sverchok have a special type of

socket, the blue one. If you link a matrix to a ​Stethoscope if you
will see something different from usual:

This is because a matrix is a ​rectangular array of numbers

arranged in rows and columns. Matrices, through matrix
multiplication, allow applying ​linear transformations to vectors.
To apply a linear transformation in 3D we need a 4x4 (4 rows and
4 columns) matrix, which are the type that we see in Sverchok. If
you know what you are doing or you want to experiment you can
create directly a transformation matrix via the ​Matrix Input ​node
from ​Matrix​.

79

Anyway you don’t need to get much into the mathematics behind

matrices to use them effectively in Sverchok (although it’s
definitely useful to make some extra research on the topic by
yourself). There are nodes that do the heavy lifting for you, in
terms of creating a matrix and applying it to a list of vectors. The
most common one is ​Matrix in​ from ​Matrices.

80

Try for example the following node tree and experiment in
applying different values to the location (L), scale (S) and rotation
(R) inputs.

As you probably figured out already each vertex of the box will be
added to the vector in ​L​, it will be scaled for the vector in ​S and it
will rotate ​A degrees around the axis going from (0,0,0) to ​R​. In
this way we can apply a ​complex set of transformations to an
object in a single node. But it’s not only that, since matrices are
mathematical objects we can ​manipulate​, for example we can
interpolate between two matrices (​Matrix Interpolation node),
we can deform them (​Matrix Deform node) or we can iterate over
them to get interesting results (​Iterate Matrix

Transformation​). Try to find all the matrix nodes inside of
Sverchok (you can use the search option) and get familiar with
them.

81

5.1.2. Lists of Matrices

Let’s see something more that we can do with matrices. Try the

following setup:

What happens is we get an object for each matrix that we have

passed. In this way we can easily get arrays of objects with
different properties starting from few inputs.

82

As a side note, please know that in Sverchok vectors can be read
as location matrices and that the location component of a matrix
can be read as vector.

5.1.3. Matrix Apply

Finally, as you have noticed, until now we have seen the results

of the matrix directly in the ​3D view by passing it to the ​Viewer

Draw​. We might need though to apply the transformation before,
so that the changes are reflected on the values of the vertex list.
We have two nodes for this: ​Matrix Apply from ​Matrix ​and
Matrix Apply (verts) from ​Transforms​. We use the first one
when we want to apply the changes to a list of objects that have
the vertex list and the edge/polygon list. We use the second one
when we have only a list of vertices/vectors or a single object.

83

84

5.1.4. Exercise

Try to reproduce the following result.

HINT: nodes you might want to use: ​NGon​, ​Cylinder​, ​List

Length​, ​Range Float​, ​Vector in​, ​Matrix in​, ​Viewer Draw​.

85

5.2 Twisting and object

We will now do an exercise that pretty much sums up what we

have seen so far. We will have to set up the problem, make use of
our knowledge of lists and debugging and use matrices. In the
second part, to proceed, we will introduce another part of Sverchok
relative to logic functions.

The exercise is twisting an object. Also here Sverchok already
offers a node for that (​Simple deformation from ​Transforms​) but
we are going to implement our own version.

86

5.2.1. Problem setup

Let’s take the Simple deformation node as a reference. There

are few options and parameters available, however we understand
the main ones are the ​Vertices ​and the ​Angle​. These two are the
two main inputs that determine the ​core problem that we are
facing here, twisting an object. We need first to find a solution to

87

this issue, starting from these two inputs and only after that we can
add features to our node tree.

In order to find a solution to our problem we need to understand
what is actually going one. “Twisting an object” gives us intuitively
an idea of the final result but it’s not descriptive of the causes. If
we pay more attention, we will notice that what is happening is a
rotation of each vertex around the ​Z axis proportional to its ​z
position​. This is what we have to achieve.

5.2.2. Implementation

If you remember we said that, when a problem is more complex,

a good strategy is to ​move backwards from its solution​. We now
know that we need to apply different levels of rotations to each
vertex. We also know that we can achieve this through matrices.
The end of our node tree then will probably look something like
this:

Keeping moving backwards, we know that the rotation depends

on the ​z height of the vertices. We could then try the following
approach:

88

However, we see the result is not what we expect:

The reason for this behavior can be read in the Matrix Apply

(verts) node. The ​Vectors list contains one object, while the
Matrixes list contains 44 objects. Basically now we have created
44 vertex lists, each with each vertex rotated by the same amount.
You can verify this in the Viewer text​. What we want instead is
one vertex list where each vertex is rotated by a different amount
or, in other words, that each matrix is associated only with one
vertex. The ​Matrix Apply (verts)​node then needs to have the
same amount of objects on both its input sockets. We can achieve

89

this by splitting the vertex list of the ​Box in multiple lists, each
containing only one vertex. Luckily we have a node that does just
that and it’s called ​List Split​. If you plug it between the ​Box and
the ​Matrix Apply (verts) ​you will already see the vertices
rotating in the way expected. To control the result you can multiply
the values that go the ​Matrix in node by a constant that you
decide.

Finally, to see correctly the edges and the polygons of the box we

need to join back all the vertices into a single list. We can do this
with the​ List Join​ node and by setting the join level to 2.

90

We have now reproduced the main features of a twisting node. If

you look at ​Simple deformation ​we see we can also decide to
filter out some vertices, starting from the bottom or from the top. It
would be interesting to try to recreate also this part. To do so we
need first to acquire some extra knowledge, in particular regarding
logic functions and list masking inside of Sverchok. This will be the
topic of the next chapter.

91

6. LOGIC

Being able to understand and use logic is a basic
and essential skill in any programming language.
Sverchok offers a set of tools that allow us to
manage logic branches inside of our node trees and
in this chapter we will see how to use them
effectively.

92

6.1 Logic functions

6.1.1. Overview

We will start from the Logic functions node that you can find

under the ​Logic category. When it comes to logic there are always
only two possible results: ​true or ​false​. True is represented with 1
and false with 0.

The Logic functions node provides a series of logic gates so
that by giving the correct data we get results in the form of lists of
true/false. If we want to check if a number is bigger that another
one, for example we choose the greater than gate (> symbol) and
we plug in the value that we want to compare in the ​x socket and
the value that we want to compare against to in the ​y​ socket.

We can compare number or we can compare logic conditions.

For example with the operator ​And we can verify if two conditions
are both true. With the operator ​Or we can verify if at least one
condition is true. With the operator ​Xor we can verify if only one
condition is true.

93

Experiment with all the logic functions and make sure to feel

comfortable with them.

 6.1.2. Exercise

In the previous chapter we have seen that, in order to implement

the ​Low limit and the ​High limit parameters of the ​Simple

deformation node for our twist-an-object node tree we need to
check if a vertex’s ​z value is within the two thresholds. Using logic
functions create now a setup that can be later used in our node
tree, where you check if a number is within two values.

94

95

6.2 List masks

6.2.1. Overview

Let’s assume that I have a list of number and that I want to

multiply by two the even ones.

[1,2,3,4] → [1,4,3,8]

With our current knowledge we should use some trick, like
exploiting the fact the lists of true and false are just lists of 0 and 1
and that we can treat them as such:

However, there is a better way, thanks to ​list masks​. List masks

are an extremely useful tool, since they allow us to filter the
elements of a list and apply operations only to the desired ones.
This can happen thanks to two nodes: ​List mask (out) and
List Mask Join (in)​, both from ​List. Using these two nodes the
previous example can be rewritten in the following way:

96

The ​List Mask (out) takes some ​data ​as input (it can be of

any type) and a ​mask​. A ​mask ​is a list of 0 and 1 (true and false,
like the ones produced by the logic functions) of the same length of
the ​data list. The node will then check which elements of the ​data
list corresponds to a true value in the mask list and which value
corresponds to a false. In our example the ​data list is [1,2,3,4]
and the ​mask is [0,1,0,1] since we are checking for even
numbers. The true values will then go in the ​dataTrue output

97

socket and the false ones in ​dataFalse where they will be two new
independent lists, in our example respectively [2,4] and [1,3]​.
We can now manipulate each of the two lists as we want. When
we are done with the changes we can pass them to the List

Mask Join (in)​, where we also provide the original ​mask (which
for convenience we can take directly from List Mask (out)​). As
result we get again a single list with the values modified as we
desired. Remember to set the correct ​Level​ in both nodes.

Some nodes already include list masks in the parameters like for

example ​Extrude Separate Faces​. In this case you just have to
pass the mask list to the node.

Make sure to practice and get comfortable with list mask since
they are a great tool.

98

6.2.2. Exercise

Create a list of numbers from 0 to 100, check which values are

between 25 and 75 and change into 1 those that are not.

99

6.3 Twisting an object - part 2

6.3.1. Implementation

We now come back to our twisting node tree to implement the

part relative to the ​high and low limit​. What we need to do is to
filter the vectors so that only those within the two threshold will be
rotated. For this we will insert a mask before the​ Matrix in​ node.

If you did the two previous exercise you already have a good idea

of what we have to do now. In fact you could try to do it straight
away. We will create two parameters for the high and low
threshold, check which of the Z values are within the boundaries,
apply to them the desired rotation and to those that are not a
rotation of 0 (we will multiply the false values by 0), all thanks to list
masks.

100

101

6.3.2. Exercise

If you compare the result of the previous paragraph with the one

of the ​Simple Deformation node, you will notice that they are not
identical. In the image below, on the left you have the result of our
not tree, on the right the result of ​Simple Deformation​.

The ​Simple Deformation node gives a much more natural and

harmonious result. First, try to understand ​why this happens and
write it down.

Now try to ​implement this solution in Sverchok, expanding the

node tree so far created. You might need to use a couple of nodes
that we have not covered until now (especially from ​List​) but I am
sure that by now you are confident enough with Sverchok to look
for and explore new nodes by yourself.

102

103

7. INTRO TO PYTHON
COMPONENTS

In this chapter we will have a look at the tools that
are available to expand the potential of Sverchok
using Python, from few lines of code, until the
skeleton of a new node. Since knowledge and
application of Python are not goals of this book, this
will be just a brief presentation for the readers that
are interested in deepening the topic.

104

7.1 Formula

If you need to apply just few simple python functions, you can do

this directly inside the ​Formula node​, which we already know,
from ​Number​.

105

7.2 Exec Node Mod

Exec Node Mod from ​Number is similar in capabilities to the

Formula node but it offers more space and thus is better when
you want to write slightly more complex functions. You will append
the results to the out list which is already declared inside the
node.

106

7.3 Scripted Node Lite

Together with the ​Scripted Node​, this is one of the two ways
inside of Sverchok to write complex custom nodes that look and
behave just (or almost) like the default ones.

You will find the ​Scripted Node Lite​ under ​Generator​.
The use is simple. First of all, in the ​Properties ​panel you will find

a list of ​templates ​that you can use and refer to. Just click on ​To
Textblock ​after you have selected one to see the content in the
Text Editor​.

If you want to create a ​new script from scratch, create a new text

data-block in the ​Text editor and give it a name. Now you need to
create a ​header ​for the script. The header will be included within a
pair of triple quotation marks, like this:

"""

[HEADER HERE]

"""

107

In the header we will specify the input sockets and the output
sockets. Once they are declared in the header, the sockets’ names
will automatically become variables available for the script.

Here is a summary view of the header’s syntax:

"""

in socketname type default=x nested=n

out socketname type

"""

We declare an ​input socket with ​in​, then we specify its name,

then its type (​v for vertices, ​s for string and lists, ​m for matrices or

o​ for objects, see also​ 2.2.3 Input and output sockets​).
We then provide a default value by writing ​= preceded by any

character (you can write ​default or ​d or simply ​.​) and then the
default value itself (if it's a list we should not include any space
within the iterable).

Finally, we specify the nestedness level. This is something you
are familiar with since ​2.1.6 Levels and objects​. Here is another
explanation taken from the GitHub Sverchok repository : 1

● n=2​ ​means​ ​named_input.sv_get()[​0​][​0​]

1 ​https://github.com/nortikin/sverchok/issues/942

108

https://github.com/nortikin/sverchok/issues/942

○ means you only want a single value.
● n=1​ ​means​ ​named_input.sv_get()[​0​]

○ You would use ​n=1 if you only ever plan to work with the first
incoming sub-list. This will essentially ignore the rest of the
incoming data on that socket.

● n=0​ ​means​ ​named_input.sv_get()
○ Generally you would use this if you plan to do something

with each sub-list coming in, for example if the input contains
several lists of verts like here:

So we could have for example:

in verts v d=[] n=0

in radius s d=10 n=2

We declare the output sockets with ​out and then we write its
name and type in the same way as for the input ones. For
example:

out verts v

out edges s

After creating the header you can start writing you ​python code
underneath it.

Once you have written the code, you can select your script from
the drop-down list of the Scripted Node Lite and press on the
plug ​icon. Your custom script will now behave like any other node.

The following is an example where, using Dijkstra's algorithm, we

find the ​shortest path​ between two vertices on a mesh.

109

"""
in verts_in v d=[] n=1
in edgs_in s d=[] n=1
in idx_start s d=0 n=2
in idx_target s d=0 n=2
out verts v
out edgs s
"""

Find the shortest path along a mesh
See https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

neighbors = {}

for​ edge ​in​ edgs_in:
 ​for​ i ​in​ range(​2​):
 ​if​ edge[i] ​in​ neighbors:
 neighbors[edge[i]].append(edge[(i+​1​)%​2​])
 ​else​:
 neighbors[edge[i]] = [edge[(i+​1​)%​2​]]

q = []
dist = []
prev = []

for​ i ​in​ range(len(verts_in)):
 q.append(i)
 dist.append(float(​"inf"​))
 prev.append(​None​)

dist[idx_start] = ​0

def​ ​length2​(a, b, verts):
 v1 = verts[a]
 v2 = verts[b]
 ​return​ pow(v2[​0​] - v1[​0​],​2​) + pow(v2[​1​] - v1[​1​],​2​) +
pow(v2[​2​] - v1[​2​],​2​)

while​ len:
 dist_in_q = [(x,i) ​for​ i, x ​in​ enumerate(dist) ​if​ i ​in​ q]
 u = min(dist_in_q, key = ​lambda​ t: t[​0​])[​1​]
 q.remove(u)

110

 ​if​ u == idx_target : ​break

 ​for​ v ​in​ neighbors[u]:
 alt = dist[u] + length2(u,v,verts_in)
 ​if​ alt < dist[v]:
 dist[v] = alt
 prev[v] = u

u = idx_target

if​ prev[u] ​or​ u == idx_start:
 ​while​ u:
 verts.append(verts_in[u])
 u = prev[u]
else​:
 print(​"Target not reachable"​)

if​ verts:
 edgs = [[[i, i+​1​] ​for​ i ​in​ range(len(verts)​-1​)]]
 verts = [verts]

print(​"Shortest path end ---- "​)

111

112

7.4 Scripted Node

The Scripted Node is similar to ​Scripted Node Lite​, but it

has a different setup system and has a couple of more
functionalities.

You can find it under ​Generator→Generator Extended​. Also in

here there are various ​templates ​immediately available for use or
as a start for further development.

The following part is partly taken from the online Sverchok

Documentation:

To use the ​Scripted Node​ you must:

● Have one ​sv_main function as the main workhorse (but
you can then define other functions/classes).

● sv_main​ must take at least one argument.
● All function arguments for ​sv_main​ must have defaults.
● Each script shall define ​in_sockets​ and ​out_sockets.
● ui_operators​ is an optional third output parameter.

The ​sv_main​() can take ints, floats and lists or nested lists. For

example:

def​ ​sv_main​(vecs_in_multi=[[]], vecs_in_flat=[], some_var=​1​):
 ​pass

[[]]​ are for nested input (lists of lists);
[]​ for single (flat) lists;
int, float​ for single value inputs;

113

For ​input and output sockets​:

in_sockets = [

 [type, ​'socket name on ui'​, input_variable],
 [type, ​'socket name on ui 2'​, input_variable2],
 ​# ...
]

out_sockets = [

 [type, ​'socket name on ui'​, output_variable],
 [type, ​'socket name on ui 2'​, output_variable2],
 ​# ...
]

● Each socket name on UI string shall be unique.
● Type are currently limited to vertices (​‘v’​), strings and lists

(​’s’​) and matrices (​’m’​).

The ​Scripted Node offers also the possibility to create ​UI
operators​, buttons that call a specific function of the script:

ui_operators = [

 [​'button_name'​, func1]
]

● In the example, ​func1 is the function that will be called when

pressing the button.
● Each “​button_name​” is the text that will appear on the button.

At the end of ​sv_main​ you will ​return ​either

114

return​ in_sockets, out_sockets

or
return​ in_sockets, out_sockets, ui_operators

Here is the shortest path example of the ​Scripted Node Lite​,
with highlighted the changes to adapt it to the ​Scripted Node​. In
particular, here we had to take care ourselves of the management
of the nestedness of the lists.

Find the shortest path along a mesh

See https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

def​ ​sv_main​(verts_in = [], edgs_in = [], idx_start = ​0​,
idx_target = ​0​):

 ​in_sockets = [
 ​[​'v'​, ​'in_vertices'​, verts_in],
 ​[​'s'​, ​'in_edges'​, edgs_in],
 ​[​'s'​, ​'idx_start'​, idx_start],
 ​[​'s'​, ​'idx_target'​, idx_target]
 ​]

 ​def​ ​outSockets​(v, e):
 ​return​ [[​'v'​, ​'verts'​, v],[​'s'​, ​'edgs'​, e]]

 ​verts_in = verts_in[​0​] ​if​ verts_in ​else​ []
 ​edgs_in = edgs_in[​0​] ​if​ edgs_in ​else​ []

 ​if​ ​not​ verts_in ​or​ ​not​ edgs_in:
 ​return​ in_sockets, outSockets([],[])

 neighbors = {}

115

 ​for​ edge ​in​ (edgs_in):
 ​for​ i ​in​ range(​2​):
 ​if​ edge[i] ​in​ neighbors:
 neighbors[edge[i]].append(edge[(i+​1​)%​2​])
 ​else​:
 neighbors[edge[i]] = [edge[(i+​1​)%​2​]]

 q = []

 dist = []

 prev = []

 ​for​ i ​in​ range(len(verts_in)):
 q.append(i)

 dist.append(float(​"inf"​))
 prev.append(​None​)

 dist[idx_start] = ​0

 ​def​ ​length2​(a, b, verts):
 v1 = verts[a]

 v2 = verts[b]

 ​return​ pow(v2[​0​] - v1[​0​],​2​) + pow(v2[​1​] - v1[​1​],​2​) +
pow(v2[​2​] - v1[​2​],​2​)

 ​while​ len:
 dist_in_q = [(x,i) ​for​ i, x ​in​ enumerate(dist) ​if​ i ​in
q]

 u = min(dist_in_q, key = ​lambda​ t: t[​0​])[​1​]
 q.remove(u)

 ​if​ u == idx_target : ​break

 ​for​ v ​in​ neighbors[u]:
 alt = dist[u] + length2(u,v,verts_in)

 ​if​ alt < dist[v]:
 dist[v] = alt

 prev[v] = u

116

 ​verts = []
 ​edgs = []

 u = idx_target

 ​if​ prev[u] ​or​ u == idx_start:
 ​while​ u:
 verts.append(verts_in[u])

 u = prev[u]

 ​else​:
 print(​"Target not reachable"​)

 ​if​ verts:
 edgs = ​[​[[i, i+​1​] ​for​ i ​in​ range(len(verts)​-1​)]​]
 verts = ​[​[verts]​]

 print(​"Shortest path end ---- "​)

 ​return​ in_sockets, outSockets(verts, edgs)

117

FORWARD

I hope you found this book interesting and useful. If you want to

contact me for anything, feel free to write to
codeplastic@gmail.com and remember to check my blog
www.codeplastic.com​.

All the best.

A.G.

118

mailto:codeplastic@gmail.com
http://www.codeplastic.com/

